
 
 
 
 
 
 
 
 

 

 
 

ANL/ALCF-17/3 

 

 

Evaluation of  the OpenCL AES Kernel Using the Intel 

FPGA SDK for OpenCL 
 
 
 

 

Argonne Leadership Computing Facility 



 
 
 
 
 
 
 
 
 
 

About Argonne National Laboratory 

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne 

and its pioneering science and technology programs, see www.anl.gov. 
 

 
 
 

DOCUMENT AVAILABILITY 
 

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a 

growing number of pre-1991 documents are available free via DOE’s SciTech Connect 

(http://www.osti.gov/scitech/) 

 
Reports not in digital format may be purchased by the public from the 

National Technical Information Service (NTIS): 

U.S. Department of Commerce  

National Technical Information Service 

5301 Shawnee Rd 

Alexandria, VA 22312 

www.ntis.gov 

Phone: (800) 553-NTIS (6847) or (703) 605-6000 

Fax: (703) 605-6900 

Email: orders@ntis.gov 

 
Reports not in digital format are available to DOE and DOE contractors from the 

Office of Scientific and Technical Information (OSTI): 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN 37831-0062 

www.osti.gov 

Phone: (865) 576-8401 

Fax: (865) 576-5728 

Email: reports@osti.gov 
 

 
 
 
 

Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or 

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document 

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne 

National Laboratory, or UChicago Argonne, LLC. 

  

http://www.osti.gov/
mailto:orders@ntis.gov
http://www.ntis.gov/
http://www.anl.gov/
http://www.osti.gov/scitech/)
mailto:reports@osti.gov


 
 
 
 
 

 

 
 

ANL/ALCF-17/3 
 

 

Evaluation of the OpenCL AES Kernel Using the Intel 
FPGA SDK for OpenCL 
 
 
 

 

prepared by 

Zheming Jin, Kazutomo Yoshii, Hal Finkel, Franck Cappello  

 

 

 

 

Argonne Leadership Computing Facility, Argonne National Laboratory 

 

 

 

 

April 20, 2017 



Evaluation of the OpenCL AES Kernel using the Intel 

FPGA SDK for OpenCL 
 

Introduction 
 

The OpenCL standard is an open programming model for accelerating algorithms on 

heterogeneous computing system. OpenCL extends the C-based programming language 

for developing portable codes on different platforms such as CPU, Graphics processing 

units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays 

(FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to 

abstract away the complex FPGA-based development flow for a high-level software 

development flow. Users can focus on the design of hardware-accelerated kernel 

functions in OpenCL and then direct the tools to generate the low-level FPGA 

implementations. The approach makes the FPGA-based development more accessible to 

software users as the needs for hybrid computing using CPUs and FPGAs are increasing. 

It can also significantly reduce the hardware development time as users can evaluate 

different ideas with high-level language without deep FPGA domain knowledge.  

    The Advanced Encryption Standard (AES) specifies a standard encryption algorithm 

that is used worldwide to protect electronic data. The OpenCL AES kernel was originally 

developed by Liu et al. [1] at Virginia Tech. The kernel function converts data to an 

unintelligible form using cryptographic keys. The kernel is constructed as a dynamic 

library engine that can be linked into the OpenSSL framework. The authors evaluated the 

performance of the kernel on the scalable multi-FPGA architecture [2]. Their hardware 

platform is based on the M506 module with a StratixV A3 FPGA and 8GB DDR3 

memory. On a single M506 module, they achieved the highest FPGA throughput of 

5.1Gbps (Giga bits per second) using the OpenCL SIMD4 vectorization optimization. 

The throughput of the same test is 4.4Gbps on an i7-4770K processor. 

    In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for 

OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board 

provides more hardware resources for a larger design exploration space. The kernel 

performance is measured with the compute kernel throughput, an upper bound to the 

FPGA throughput. The report presents the experimental results in details. The Appendix 

lists the kernel source code. 

Overview of the two FPGA devices 
 

FPGA offers a wide variety of configurable memories, high-speed I/Os, logic blocks and 

routing. StratixV and Arria10 series of Intel FPGAs are two products for high-

performance applications. Table 1 compares the technology and resource counts of the 

StratixV A3 FPGA device [3] on the M506 with those of the Arria10 GX1150 FPGA 

device [4] on the Nallatech 385A.  The Arria10 device features 20-nm SoC process 

technology and operates at 0.95 V core voltage while the StratixV device uses 28-nm 

technology and operates at 0.9 V. Based on the results in Table 1, the Arria10 device has 



approximately 3X more resources than the StratixV device, so it provides a larger design 

exploration space for the performance evaluation of the AES kernels. 

 
Table 1. Device overview of two FPGAs 

Device Technology Logic elements ALMs Register M20K 

memory bits 

Stratix 

5SGXMA3 
28nm 340K 128,300 513K 19Mb 

Arria  

10AX115 
20nm 1150K 427,200 1708800 54260Kb 

 

Nallatech 385A 
 
Nallatech 385A is a PCIe-based FPGA accelerator card that features an Arria 10 GX1150 

FPGA device, PCIe × 8 Generation 3 host interface, and two banks of 4GB DDR3 

memory. The theoretical peak floating-point performance is 1.5 TFLOPS and the 

theoretical peak memory bandwidth approximately 34 GB/s. 

Kernel optimizations 
 

As described in [5], users can take advantage of compute unit replication and kernel 

SIMD vectorization to achieve higher throughput or lower kernel time. The compute 

device replication generates multiple compute units for each kernel. Each compute unit 

has its own memory access interface. The SIMD vectorization duplicates only the data 

path of the compute unit without generating additional memory interfaces. When the 

kernel is vectorized, the static memory coalescing is performed automatically by the 

compiler to generate a memory interface that can coalesce the multiple memory loads 

into a single wide load.  While there is no limit to the number of kernel copies that users 

can specify, the number of SIMD lanes must be a power of two. The compiler will give a 

warning when the width of all the lanes exceeds the memory interface data width. 

Experimental setup 
 

In this work, a host system is set up with two 2.6 GHz Intel Xeon processors and 32GB 

DDR3 memory for each node. The PCI Express provides a Gen2×8 connection. CentOS 

6.8 with Linux kernel 2.6.32 is installed as the operating system. We used the Intel’s 

FPGA SDK for OpenCL version 16.0.2 Pro Prime for the experimental results.  

    For the kernel test, we choose the same input data size as in the paper [2]. The size of 

the input data is 2GB and the block size is 128MB. The host program divides the input 

data into 16 blocks (2GB/128MB) and they are encrypted sequentially in 16 passes. The 

test mode is the AES 256-bit algorithm in ECB mode. 

Experimental results 
 

Table 2 lists the FPGA resource usage and the maximum frequency (Fmax) of each 

kernel. The default kernel is the baseline kernel without any kernel optimization. 



Replication of compute unit is represented as “cuX” where X indicates the replication 

times. The combination of kernel duplication and N-lane vectorization is represented as 

“simdN+cuX”. The logic utilization of each kernel is below 40%. The RAM block usage 

increases from 17% (simd2) to 45% (simd16) for the kernel vectorization and from 20% 

(cu2) to 67% (cu16) for the kernel duplication. The significant increase in RAM blocks 

for both optimizations is due to the duplication of the four 256-entry by 32-bit look-up 

tables in the OpenCL AES kernel. The SDK fails to build when there are more than two 

duplicate kernels with SIMD16 vectorization, because they require more RAM blocks 

than the device can provide. As shown in the table, kernel duplication degrades the Fmax 

from 247 MHz to 186 MHz while kernel vectorization decreases the maximum frequency 

from 250 MHz to 218 MHz. This indicates the impact of increasing RAM blocks on the 

timing of the kernel implementation. 

 
Table 2.  FPGA resource usage and Fmax of the implemented kernels 

Kernel  Logic 

Utilization 

Memory  

bits 

RAM  

blocks 

Fmax  

(MHz) 

default 13% 8% 16% 245 

simd2 13% 8% 17% 249 

simd4 14% 9% 21% 250 

simd8 15% 10% 29% 238 

simd16 18% 14% 45% 218 

cu2 14% 8% 20% 247 

cu4 17% 10% 26% 233 

cu8 24% 12% 40% 200 

cu16 36% 17% 67% 186 

simd16+cu2 25% 21% 78% 207 

 

The FPGA power consumption fluctuates between 30W and 60W based on the power 

meters reading at 100ms interval over the time of testing all the kernels. We use the 

compute kernel throughput (Mbps) to measure the performance of each implementation. 

The compute kernel throughput is calculated by dividing the bit size of the workload over 

the total kernel execution time on the FPGA. The kernel execution time on an FPGA is 

consistent. We found the FPGA throughput, which is calculated by dividing the workload 

 

Figure 1  Compute kernel throughput on the Nallatach 385A FPGA board 
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over the total execution time, is not consistent for each application run. The total 

execution time includes the data transfer time between the host and the device, kernel 

execution time and the host execution time. While the compute kernel throughput is the 

upper bound to the FPGA throughput, it accurately reflects the performance of each 

kernel running on an FPGA device. 

    As shown in Figure 1, the kernel throughput does not increase linearly with the 

increase of the number of compute units and/or vector lanes. The throughput increases by 

less than 50% when the number of compute units or vector lanes doubles from two to 

sixteen. The throughput of each SIMD implementations is slightly better than that of 

compute unit duplications. 

 

 

Figure 2  Compute kernel throughput vs. Local work size in kernel duplication 

 

In the kernel duplication optimization, it is interesting that the kernel performance is 

intimately related with the local work size [6] for multiple compute units.  Figure 2 

presents the impact of the local work size on the compute kernel throughput. The x axis 

represents the local work size using the exponent as shorthand for 2
exponent

. The local 

work sizes are multiples of four. When there is a single compute unit (as a reference), the 

kernel throughput slightly fluctuates between 3,382 Mbps and 3,384 Mbps over local 

work sizes. For multiple compute units, the kernel throughput reaches its maximum when 

the local work size ranges from 2
10

 to 2
16

. 

 

Conclusion 
 

This report provides detailed results of the OpenCL AES kernel implemented on a single 

Arria10 GX1150 FPGA board that is available in the laboratory. In our experiment, the 

compute kernel throughput is the upper bound to the FPGA throughput for the AES 

kernel. The results of the compute kernel throughput show the kernel duplication and 

vectorization improve the kernel performance at the cost of high hardware resources. 

Using more compute units or vector lanes increases the block RAM usage, which in turn 
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degrades the maximum frequency of the FPGA implementations. The best performance 

using kernel duplication is achieved by experimenting with the local work sizes. 
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Appendix 
 
/** 

 * Copyright 2011 University of Virginia. All rights reserved. 

 *  

 * Redistribution and use in source and binary forms, with or without modification, are 

 * permitted provided that the following conditions are met: 

 *  

 * 1. Redistributions of source code must retain the above copyright notice, this list of 

 * conditions and the following disclaimer. 

 *  

 * 2. Redistributions in binary form must reproduce the above copyright notice, this list 

 * of conditions and the following disclaimer in the documentation and/or other materials 

 * provided with the distribution. 

 *  

 * THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ''AS IS'' AND ANY EXPRESS OR IMPLIED 

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 

 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> OR 

 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 

 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 */ 

 

// The array values omitted to save space 

__constant uint Te0[256] = {… …}  

__constant uint Te1[256] = {… …} 

__constant uint Te2[256] = {… …} 

__constant uint Te3[256] = {… …} 

 

__kernel void AES_encrypt (__global uint4 *state, __constant uint4 *rk, uint rounds) { 

 

  uint global_id = get_global_id(0); 

  uint4 s, t; 

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html


 

  s = state[global_id] ^ rk[0]; 

 

  uint r = rounds >> 1; 

  uint4 offset0, offset1, offset2, offset3; 

  for (;;) {   

    offset0 = s & 0xff; 

    offset1 = (s.yzwx >> 8) & 0xff; 

    offset2 = (s.zwxy >> 16) & 0xff; 

    offset3 = (s.wxyz >> 24); 

    t = (uint4)(Te0[offset0.x], Te0[offset0.y], Te0[offset0.z], Te0[offset0.w]) ^ 

      (uint4)(Te1[offset1.x], Te1[offset1.y], Te1[offset1.z], Te1[offset1.w]) ^ 

      (uint4)(Te2[offset2.x], Te2[offset2.y], Te2[offset2.z], Te2[offset2.w]) ^ 

      (uint4)(Te3[offset3.x], Te3[offset3.y], Te3[offset3.z], Te3[offset3.w]) ^ 

      rk[1]; 

 

    rk += 2; 

    if (--r == 0) { 

      break; 

    } 

 

    offset0 = t & 0xff; 

    offset1 = (t.yzwx >> 8) & 0xff; 

    offset2 = (t.zwxy >> 16) & 0xff; 

    offset3 = (t.wxyz >> 24); 

    s = (uint4)(Te0[offset0.x], Te0[offset0.y], Te0[offset0.z], Te0[offset0.w]) ^ 

      (uint4)(Te1[offset1.x], Te1[offset1.y], Te1[offset1.z], Te1[offset1.w]) ^ 

      (uint4)(Te2[offset2.x], Te2[offset2.y], Te2[offset2.z], Te2[offset2.w]) ^ 

      (uint4)(Te3[offset3.x], Te3[offset3.y], Te3[offset3.z], Te3[offset3.w]) ^ 

      rk[0]; 

  } 

 

  offset0 = (t.zwxy >> 16) & 0xff; 

  offset1 = (t.wxyz >> 24); 

  offset2 = t & 0xff; 

  offset3 = (t.yzwx >> 8) & 0xff; 

 

  s = ((uint4)(Te2[offset2.x], Te2[offset2.y], Te2[offset2.z], Te2[offset2.w]) & 0x000000ff) ^ 

    ((uint4)(Te3[offset3.x], Te3[offset3.y], Te3[offset3.z], Te3[offset3.w]) & 0x0000ff00) ^ 

    ((uint4)(Te0[offset0.x], Te0[offset0.y], Te0[offset0.z], Te0[offset0.w]) & 0x00ff0000) ^ 

    ((uint4)(Te1[offset1.x], Te1[offset1.y], Te1[offset1.z], Te1[offset1.w]) & 0xff000000) ^ 

    rk[0]; 

 

  state[global_id] = s; 

} 
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